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Outline

• Objectives
• Predicting Reliability

• Infancy Failures
• Wear/Degradation-induced Failure

• Evaluation of Material Properties
• Implications of Results for Manufacturing
• Future Work

• Phase Identification and Micromechanical Stress 
Calculations
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Objectives

In collaboration with industrial teams and other Core 
Technology Program participants,

• To develop/adapt/recommend test techniques to evaluate the 
properties and behavior of materials and components for 
SOFC.

• To identify and understand the mechanism responsible for 
the failure of materials and components for SOFCs.

• To develop methodologies for predicting the durability and 
reliability of materials and components for SOFCs.
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A bathtub curve describes the evolution of the 
failure rate for most complex systems

infancy failures

wear/degradation failures
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What information is needed to predict 
infancy failures of SOFCs?

strength mechanical
load

Stress (MPa)

• Stress distribution 

• Distribution of strengths
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Stress Distribution
• Geometry
• Temperature Distribution
• Mechanical Loads
• Boundary Conditions
• Elastic Constants
• Volumetric Changes 
• Thermal Expansion

Elastic Constants as a function of:
• porosity
• temperature

Volumetric Changes due to reduction

Distribution of Strengths

Strength as a function of:
• porosity
• temperature
• size

Toughness
• interfacialReliability/Probability of Failure

What information is needed to predict infancy 
failures of SOFCs?
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Characterized Materials

8YSZ - Zirconia stabilized with 8mol% Yttria 
NiO/YSZ - 75mol%NiO/25mol%YSZ, a precursor to Ni/YSZ anode

6.8 
±0.3

19.8
±0.9-22.8

±1.1-5.7
±1.2

6.3 
±1.5

6.2
±1.0Measured porosity, %

1400 oC for 2 h1400 oC for 2 hSintering conditions
025303030000Pore former, vol%

1.001.001.501.000.501.000.500.25Nominal Thickness, mm
44642421# of laminated layers

NiO/YSZ8YSZ
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Young’s and Shear Moduli
Impulse Excitation Technique (ASTM C1259-98)

Ceramic Disc

Microphone

Impulse Tool

Foam 
Support

Radius of support = 0.681 of Disc radius

Torsional Flexural

Et,f = Young's modulus as measured by torsional/flexural resonance 
m = mass of the disc 
t = height of the disc 
D = diameter of the disc 
Ft,f = fundamental torsional/flexural resonant frequency of the disc 
Kt = a correction factor (ASTM C1259-98) 
µ = Poisson's ratio
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Young’s and Shear Moduli
8mol%YSZ as a function of porosity
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This work:

E = 229.85 (1 - 3.80 p)
G = 88.24 (1 - 3.69 p)

E = 234.54 exp( - 4.35 p)
G = 90.20 exp( - 4.51 p)

Literature*:

E = 219.53 (1 – 2.50 p)
G = 83.22 (1 – 2.39 p)

E = 220.27 exp( - 2.76 p)
G = 83.47 exp( - 2.63 p)

*A. Selcuk and A. Atkinson, J. Euro. Ceram. Soc., 17 (1007) p.1523
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Young’s and Shear Moduli
75mol%NiO/YSZ as a function of porosity
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This work:

E = 195.49 (1 – 1.96 p)
G = 75.15 (1 – 1.93 p)

E = 204.47 exp( - 2.76 p)
G = 78.09 exp( - 2.65 p)

Literature*:

E = 205.46 (1 – 2.10 p)
G = 77.04 (1 – 2.03 p)

E = 207.13 exp( - 2.48 p)
G = 78.04 exp( - 2.38 p)

*A. Selcuk and A. Atkinson, J. Euro. Ceram. Soc., 17 (1007) p.1523
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Thermogravimetric Analysis (TGA) of NiO/YSZ Reduction
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Reduction of NiO measured for different samples. Samples were reduced for a different 
period of time at 800oC in 4%H2-96%Ar gas mixture
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Young’s and Shear Moduli vs. wt% of Reduced NiO in Anode
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Stress Distribution
• Geometry
• Temperature Distribution
• Mechanical Loads
• Boundary Conditions
• Elastic Constants
• Volumetric Changes 
• Thermal Expansion

Elastic Constants as a function of:
• porosity
• temperature

Volumetric Changes due to reduction

Distribution of Strengths

Strength as a function of:
• porosity
• temperature
• size

Toughness
• interfacialReliability/Probability of Failure

What information is needed to predict infancy 
failures of SOFCs?
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Thermal Expansion of NiO/8YSZ

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

8YSZ/NiO-8YSZ

Temperature C

expansion (%) = -0.049 + 1.181x10-3T + 4.526 x 10-8T2

Dilatometry (air)

250 C
antiferromagnetic - paramegnetic

phase transition



16

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Thermal Expansion of 8YSZ
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Stress Distribution
• Geometry
• Temperature Distribution
• Mechanical Loads
• Boundary Conditions
• Elastic Constants
• Volumetric Changes 
• Thermal Expansion

Elastic Constants as a function of:
• porosity
• temperature

Volumetric Changes due to reduction

Distribution of Strengths

Strength as a function of:
• porosity
• temperature
• size

Toughness
• interfacialReliability/Probability of Failure

What information is needed to predict infancy 
failures of SOFCs?
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Biaxial Strength
Ring-on-ring Testing (ASTM C1499-01)

Loading ring, DL

Specimen

Supporting ring, Ds
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where F is breaking load, h sample thickness, ν is Poisson’s ratio and D, Ds and Dl 
are diameter of sample, supporting ring and loading ring, respectively 
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Biaxial Strength
NiO/8YSZ – Weibull plots
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Biaxial Strength
NiO/YSZ – Weibull plots
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Biaxial Strength
NiO/YSZ – Summary of Weibull statistics

-98.9 / 7.0
92.6 ± 15.1

152.3 / 5.8
140.9 ± 28.6800oC

79.6 / 3.4 - 115.4 / 17.4
65.4 ± 25.3 - 111.6 ± 7.6

93.3 / 9.4
88.5 ± 11.4

134.6 / 8.6
127.4 ± 17.3Room Temperature

2, 4 and 6 - 30/234 - 25/204 - 0/7# layers-Pore former/Porosity, %

NiO/YSZ

-44.7 / 18.7 
43.5 ± 2.9-Room Temperature

-4 - 30/41-# layers-Pore former/Porosity, %

Ni/YSZ (Fully reduced NiO/YSZ)

90.6 / 3.3
80.8 ± 32.1

111.3 / 16.5
107.3 ± 10.8

105.9 / 3.5
95.3 ± 27.2Room Temperature

6 - 30/234 - 30/232 - 30/23#  layers -Pore former/Porosity, %
NiO/YSZ

Characteristic strength (MPa) / Weibull modulus  Average strength ± Standard Deviation (MPa)
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Biaxial Strength
8YSZ – Weibull plots
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Biaxial Strength
8YSZ – Summary Weibull Statistics

160.5 / 4.3
145.5 ± 41.1

175.4 / 8.2
166.2 ± 25.6

208.9 / 5.9
193.9 ± 38.8800oC

131.5 / 4.4
127.10 ± 29.4--600oC

222.2 / 3.7
201.5 ± 56.5

182.4 / 4.8
166.4 ± 45.4

345.3 / 4.2
313.7 ± 84.8Room Temperature

421Number of layers

8mol%YSZ                                     Characteristic strength (MPa) / Weibull modulus
Average strength ± Standard Deviation (MPa)
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Fracture Toughness
Double Torsion Testing

Precrack
Load, P Specimen
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 +=

Precracked @ 0.02 mm/min and tested @ 1 mm/min

1.04 ± 0.131.65 ± 0.02KIC, MPa m1/2

NiO/YSZ8YSZ4 layers
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Implications of 
stochastic nature of strength
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Bigger samples are weaker 
than smaller samples
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Implications of stochastic nature of strength

If a specimen of size Vo has average strength σo, then 
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Impact of Stochastic Strength on 
Manufacturing Decisions

Instead of building large cells, which are weaker than 
smaller cells, why not using a larger number of smaller cells 

to cover the same surface area?
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Impact of Stochastic Strength on 
Manufacturing Decisions
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Future Work

• Complete implementation of methodology to predict 
reliability of model system (geometry, materials).

• Verification of stress predictions using Raman 
spectroscopy.

• Determination of fracture toughness and adhesion 
strength of thin coatings.

• Effect of thermal cycling on reliability and durability
• Long-term reliability
• Compositional Analysis and Micromechanical Modeling
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Compositional Analysis and 
Micromechanical Modeling

Ni                                              
white – maximum
Black -minimum  

Zr                                             
white – maximum
Black -minimum  

O                                           
white – maximum
Black -minimum  

Ni, O, Zr                                          
blue – ZrO
Red – Ni
Yellow – NiO
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Compositional Analysis and 
Micromechanical Stress Modeling

Ni
NiO

8YSZ

pore

σx σy


